Dynaflow Resolve System

ION CHANNEL SCREENING PLATFORM FOR SINGLE-CELL PATCH-CLAMP RECORDING

The Dynaflow® Resolve is an ion channel screening platform for your existing patch-clamp setup that offers solution exchange at unsurpassed speed, control, and flexibility.

The system allows for recording of any ion channel current in any patch-clamp recording configuration. You can use all type of cells and all kinds of compounds that are required for your successful experiments.

Contact Us to get more information about  Dynaflow Resolve.

  • True versatility

Works with any cell type, any patch-clamp configuration, and any type of ion channel from single-cell channel recordings to secondary ion channel screening.

  • Complex perfusion protocols

Rapid solution exchange (low millisecond range) enables analysis of fast kinetics.

  • Low compound consumption and reusable chip

Allows long experiments with less than 150 μl, minimizing compound and buffer consumption.

  • Optimized for safety pharmacology

Enables long experiments and long exposure times. Optimized for sticky compounds and designed for cumulative dose-response.

  • Maximized data quality

Numerous cells per chip. Multiple compounds analyses per chip. Full dose-response for every compound. Gigaseal recordings with superior experimental control.

The system includes a motorized scan stage with stage controller and a joystick, a syringe pump to drive the flow in the microfluidic chip, as well as the Dynaflow® Commander software. It fully integrates with most inverted microscopes.

Dynaflow Resolve System with numbers

A system contains:

1 – Dynaflow® Resolve Chip

The Dynaflow® Resolve chip has 16 microchannels and is composed of a glass microfluidic chip and a plastic interface forming the wells and the recording chamber. The chip is reusable and developed to reduce the risk for non-specific binding of “sticky compounds” and offering improved cost-efficiency through low compound consumption.

View Dynaflow Resolve Chip Specifications >>

2 – Motorized Scan Stage with Stage Controller and Joystick

A motorized scan stage is used to automatically translate chip movements. It includes a stage controller and a joystick and it is controlled by the Dynaflow® Commander software.

3 – Syringe Pump

A easy setup syringe pump especially designed to drive the flow in the Dynaflow® Resolve chip.

4 – Dynaflow® Commander Software

The Commander software assures control and pre-programming of the movements of the scan stage. It synchronizes precision solution exchange with real time tagging of the acquired data. The Windows-based Dynaflow® Commander software allows a full control of experiments, including scan protocols, exposure times and instant protocol changes.

Dynaflow Resolve publications

AuthorsTitleJournalYeardoi
Wang, X. Daley, C. Gakhar, V. Henry Lange, H. ... JM, Uslaner.Pharmacological characterization of the novel and selective α7 nicotinic acetylcholine receptor positive allosteric modulator BNC375Journal of Pharmacology and Experimental Therapeutics202010.1124/jpet.119.263483
Hanson, J. E. Ma, K. Elstrott, J. Weber, M. Saillet, S. Khan, A. S. ... Palop, J. J.GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer's Disease Models.Cell Reports202010.1016/j.celrep.2019.12.030
Marie F. Smeland, Conor McClenaghan, Helen I. Roessler, Sanne Savelberg, Geir Åsmund Myge Hansen, Helene Hjellnes, Kjell Arne Arntzen, Kai Ivar Müller, Andreas Rosenberger Dybesland, Theresa Harter, Monica Sala-Rabanal, Chris H. Emfinger, Yan Huang, Soma S. Singareddy, Jamie Gunn, David F. Wozniak, Attila Kovacs, Maarten Massink, Federico Tessadori, Sarah M. Kamel, Jeroen Bakkers, Maria S. Remedi, Marijke Van Ghelue, Colin G. Nichols & Gijs van HaaftenABCC9-related Intellectual disability Myopathy Syndrome is a KATP channelopathy with loss-of-function mutations in ABCC9Nature Communications201910.1038/s41467-019-12428-7
Clairfeuille, T. Cloake, A. Infield, D. T. ... Hackos, D. H. Rohou, A. Payandeh, J.Structural basis of a-scorpion toxin action on Na v channelsScience201910.1126/science.aav8573
Shields, S., Deng, L., Reese, R., Dourado, M., Tao, J., Foreman, O., . . . Hackos, D.Insensitivity to pain upon adult-onset deletion of nav1.7 or its blockade with selective inhibitorsJournal of Neuroscience201810.1523/JNEUROSCI.1049-18.2018
Ng, T., Vandenberg, J., & Perry, M.Pharmacological Activation of hERG Potassium Channels in Congenital Long QT Syndrome 2: Activator Compound ICA-105574 and its Effects on Mutant hERG Potassium Channels in Long QT Syndrome 2Heart, Lung and Circulation201810.1016/j.hlc.2018.06.039
Wang, T., Brown, B., Deng, L., Sellers, B., Lupardus, P., Wallweber, H., . . . Hanson, J.A novel NMDA receptor positive allosteric modulator that acts via the transmembrane domain.Neuropharmacology201710.1016/j.neuropharm.2017.04.041
Volgraf, M., Sellers, B., Jiang, Y., Wu, G., Ly, C., Villemure, E., . . . Schwarz, J.Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based DesignJournal of Medicinal Chemistry201610.1021/acs.jmedchem.5b02010
Yamaguchi, Y., Nishide, K., Kato, M., Hata, Y., Mizumaki, K., Kinoshita, K., . . . Nishida, N.Glycine/serine polymorphism at position 38 influences KCNE1 subunit's modulatory actions on rapid and slow delayed rectifier K+ currents.Circulation Journal201410.1253/circj.CJ-13-1126
Trkulja, C. L. Jansson, E. T. Jardemark, K. Orwar, O.Probing Structure and Function of Ion Channels Using Limited Proteolysis and MicrofluidicsJournal of the American Chemical Society201410.1021/ja507285w
Jansson, E., Trkulja, C., Ahemaiti, A., Millingen, M., Dm Jeffries, G., Jardemark, K., & Orwar, O. Open Access Effect of cholesterol depletion on the pore dilation of TRPV1. Molecular Pain201310.1186/1744-8069-9-1
Al-Sabi, A., Kaza, S., Oliver Dolly, J., & Wang, J.Pharmacological characteristics of Kv1.1- And Kv1.2-containing channels are influenced by the stoichiometry and positioning of their α subunits.Biochemical Journal201310.1042/BJ20130297
Graef, J., Benson, L., Sidach, S., Wei, H., Lippiello, P., Bencherif, M., & Fedorov, N.Validation of a high-throughput, automated electrophysiology platform for the screening of nicotinic agonists and antagonists.Journal of Biomolecular Screening201310.1177/1087057112457414
Moaddel, R. Abdrakhmanova, G. Kozak, J. Jozwiak, K. Toll, L. Jimenez, L. ... Wainer, I.A method for bidirectional solution exchange—“Liquid bullet” applications of acetylcholine to α7 nicotinic receptorsEuropean Journal of Pharmacology201310.1016/J.EJPHAR.2012.11.023
Dinklo, T., Shaban, H., Thuring, J., Lavreysen, H., Stevens, K., Zheng, L., . . . Lesage, A.Characterization of 2-[[4-fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4- pyridinyl)-5-thiazolemethanol (JNJ-1930942), a novel positive allosteric modulator of the α7 nicotinic acetylcholine receptor.Journal of Pharmacology and Experimental Therapeutics201110.1124/jpet.110.173245
Zhang, H., Akrouh, A., Kurata, H., Remedi, M., Lawton, J., & Nichols, C.HMR 1098 is not an SUR isotype specific inhibitor of heterologous or sarcolemmal KATP channels.Journal of Molecular and Cellular Cardiology201110.1016/j.yjmcc.2010.12.011
Gever, J., Soto, R., Henningsen, R., Martin, R., Hackos, D., Panicker, S., . . . Ford, A.AF-353, a novel, potent and orally bioavailable P2X3/P2X2/3 receptor antagonist.British Journal of Pharmacology201010.1111/j.1476-5381.2010.00796.x
Al-Sabi, A., Shamotienko, O., Ni Dhochartaigh, S., Muniyappa, N., Le Berre, M., Shaban, H., . . . Oliver Dolly, J.Arrangement of Kv1 α subunits dictates sensitivity to tetraethylammonium.Journal of General Physiology201010.1085/jgp.200910398
Leech, Colin A.
Dzhura, Igor
Chepurny, Oleg G.
Schwede, Frank
Genieser, Hans G.
Holz, George G.
Facilitation of β-cell KATP channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor EpacIslets201010.4161/isl.2.2.10582
Kurata, H., Rapedius, M., Kleinman, M., Baukrowitz, T., & Nichols, C. Voltage-dependent gating in a "voltage sensor-less" ion channel.PLoS Biology201010.1371/journal.pbio.1000315
Ghiron, C. Haydar, S. N. Aschmies, S. Bothmann, H. Castaldo, C. Cocconcelli, G. ... Zanelli, U.Novel Alpha-7 Nicotinic Acetylcholine Receptor Agonists Containing a Urea Moiety: Identification and Characterization of the Potent, Selective, and Orally Efficacious Agonist 1-[6-(4-Fluorophenyl)pyridin-3-yl]-3-(4-piperidin-1-ylbutyl) Urea (SEN34625/WYE-103914)
Journal of Medicinal Chemistry201010.1021/jm901692q
Liu, C. Somps, C.Telithromycin blocks neuromuscular transmission and inhibits nAChR currents in vitroToxicology Letters201010.1016/J.TOXLET.2010.02.005
Fedorov, N., Benson, L., Graef, J., Lippiello, P., & Bencherif, M.Differential pharmacologies of mecamylamine enantiomers: Positive allosteric modulation and noncompetitive. Journal of Pharmacology and Experimental Therapeutics.200910.1124/jpet.108.146910
Olofsson, J., Bridle, H., Jesorka, A., Isaksson, I., Weber, S., & Orwar, O.Direct access and control of the intracellular solution environment in single cellsAnalytical Chemistry200910.1021/ac802081m
Stanojevic, V., Habener, J., Holz G., Leech, C.Cytosolic adenylate kinases regulate K-ATP channel activity in human β-cellsBiochemical and Biophysical Research Communications200810.1016/j.bbrc.2008.01.109
Flagg, T., Kurata, H., Masia, R., Caputa, G., Magnuson, M., Lefer, D., . . . Nichols, C.Differential structure of atrial and ventricular KATP: Atrial KATP channels require SUR1.Circulation Research200810.1161/CIRCRESAHA.108.178186
Matulef, K., Howery, A., Tan, L., Kobertz, W., Bois, J., & Maduke, M.Discovery of potent CLC chloride channel inhibitors.ACS Chemical Biology200810.1021/cb800083a
Brown, A., Liao, Z., & Goodman, M.MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: Auxiliary subunits that enable channel activity.Journal of General Physiology200810.1085/jgp.200709910
Kang, G., Leech, C., Chepurny, O., Coetzee, W., & Holz, G. Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic β-cells and rat INS-1 cells.Journal of Physiology200810.1113/jphysiol.2007.143818
Brown, A. L. Liao, Z. Goodman, M. B.MEC-2 and MEC-6 in the Caenorhabditis elegans Sensory Mechanotransduction Complex: Auxiliary Subunits that Enable Channel ActivityJournal of General Physiology 200810.1085/jgp.200709910
Brown, A., Fernandez-Illescas, S., Liao, Z., & Goodman, M.Gain-of-function mutations in the MEC-4 DEG/ENaC sensory mechanotransduction channel alter gating and drug blockade. Journal of General Physiology200710.1085/jgp.200609672
Sinclair, J., Granfeldt, D., Pihl, J., Millingen, M., Lincoln, P., Farre, C., . . . Orwar, O.A biohybrid dynamic random access memory.Journal of the American Chemical Society200610.1021/ja0580993
Borghese, C., Werner, D., Topf, N., Baron, N., Henderson, L., Boehm, S., . . . Harrison, N. (2006).An isoflurane- and alcohol-insensitive mutant GABAA receptor α1 subunit with near-normal apparent affinity for GABA: Characterization in heterologous systems and production of knockin mice.Journal of Pharmacology and Experimental Therapeutics200610.1124/jpet.106.104406
Granfeldt, D., Sinclair, J., Millingen, M., Farre, C., Lincoln, P., & Orwar, O.Controlling desensitized states in ligand-receptor interaction studies with cyclic scanning patch-clamp protocols.Analytical Chemistry200610.1021/ac060812z
Olofsson, J. Bridle, H. Sinclair, J. Granfeldt, D. Sahlin, E.
Orwar, Owe
A chemical waveform synthesizerPNAS200510.1073/pnas.0500230102
Persson, F., Carlsson, L., Duker, G., & Jacobson, I.Blocking characteristics of hERG, hNav1.5, and hKvLQT1/hminK after administration of the novel anti-arrhythmic compound AZD7009.Journal of Cardiovascular Electrophysiology200510.1046/j.1540-8167.2005.40427.x
Persson, F., Carlsson, L., Duker, G., & Jacobson, I.Blocking Characteristics of hKv1.5 and hKv4.3/hKChIP2.2 After Administration of the Novel Antiarrhythmic Compound AZD7009Journal of Cardiovascular Electrophysiology200510.1097/01.fjc.0000161405.37198.c1
Pihl, J. Sinclair, J. Sahlin, E. Karlsson, M. Petterson, F. Olofsson, J. Orwar,O.Microfluidic Gradient-Generating Device for Pharmacological ProfilingAnalytical Chemistry200510.1021/ac050218+
Hill, A. P. Perrin, M. J. Heide, J. Campbell, T. J. Mann, S. A.
Vandenberg, J. I.
Kinetics of Drug Interaction with the Kv11.1 Potassium ChannelMolecular Pharmacology200510.1124/mol.114.091835
Pihl, J. Karlsson, M. Chiu, D.Microfluidic technologies in drug discoveryDrug Discovery Today200510.1016/S1359-6446(05)03571-3
Olofsson, J., Pihl, J., Sinclair, J., Sahlin, E., Karlsson, M., & Orwar, O.A microfluidics approach to the problem of creating separate solution environments accessible from macroscopic volumes.Analytical Chemistry2004doi.org/10.1021/ac035527j
Sinclair, J., Pihl, J., Olofsson, J., Karlsson, M., Jardemark, K., Chiu, D., & Orwar, O. A cell-based bar code reader for high-throughput screening of ion channel-ligand interactions.Analytical Chemistry200210.1021/ac026133f

[select-faq faq_id=’6841′] [select-faq faq_id=’6842′] [select-faq faq_id=’6843′]

Dynaflow Resolve chip close up

Dynaflow setup

[select-faq faq_id=’4441′] [select-faq faq_id=’4450′] [select-faq faq_id=’4452′]

 

Dynaflow chip

[select-faq faq_id=’4455′][select-faq faq_id=’4456′][select-faq faq_id=’4457′][select-faq faq_id=’4458′][select-faq faq_id=’4459′][select-faq faq_id=’4460′][select-faq faq_id=’4461′][select-faq faq_id=’4462′][select-faq faq_id=’4463′][select-faq faq_id=’4464′][select-faq faq_id=’4465′]

 

Dynaflow applications

[select-faq faq_id=’4534′][select-faq faq_id=’4535′][select-faq faq_id=’4536′][select-faq faq_id=’4537′][select-faq faq_id=’4538′][select-faq faq_id=’4539′][select-faq faq_id=’4540′]

 

Dynaflow and cells

[select-faq faq_id=’4483′][select-faq faq_id=’4487′][select-faq faq_id=’4490′][select-faq faq_id=’4492′][select-faq faq_id=’4494′][select-faq faq_id=’4496′]